Reinforcement learning for multi-agent systems

نویسندگان

  • R. Babuška
  • B. De Schutter
  • Robert Babuška
  • Lucian Buşoniu
  • Bart De Schutter
چکیده

Multi-agent systems are rapidly finding applications in a variety of domains, including robotics, distributed control, telecommunications, etc. Although the individual agents can be programmed in advance, many tasks require that they learn behaviors online. A significant part of the research on multi-agent learning concerns reinforcement learning techniques. This paper gives a survey of multiagent reinforcement learning, starting with a review of the different viewpoints on the learning goal, which is a central issue in the field. Two generic goals are distinguished: stability of the learning dynamics, and adaptation to the other agents’ dynamic behavior. The focus on one of these goals, or a combination of both, leads to a categorization of the methods and approaches in the field. The challenges and benefits of multi-agent reinforcement learning are outlined along with open issues and future research directions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voltage Coordination of FACTS Devices in Power Systems Using RL-Based Multi-Agent Systems

This paper describes how multi-agent system technology can be used as the underpinning platform for voltage control in power systems. In this study, some FACTS (flexible AC transmission systems) devices are properly designed to coordinate their decisions and actions in order to provide a coordinated secondary voltage control mechanism based on multi-agent theory. Each device here is modeled as ...

متن کامل

Utilizing Generalized Learning Automata for Finding Optimal Policies in MMDPs

Multi agent Markov decision processes (MMDPs), as the generalization of Markov decision processes to the multi agent case, have long been used for modeling multi agent system and are used as a suitable framework for Multi agent Reinforcement Learning. In this paper, a generalized learning automata based algorithm for finding optimal policies in MMDP is proposed. In the proposed algorithm, MMDP ...

متن کامل

Optimal adaptive leader-follower consensus of linear multi-agent systems: Known and unknown dynamics

In this paper, the optimal adaptive leader-follower consensus of linear continuous time multi-agent systems is considered. The error dynamics of each player depends on its neighbors’ information. Detailed analysis of online optimal leader-follower consensus under known and unknown dynamics is presented. The introduced reinforcement learning-based algorithms learn online the approximate solution...

متن کامل

User-based Vehicle Route Guidance in Urban Networks Based on Intelligent Multi Agents Systems and the ANT-Q Algorithm

Guiding vehicles to their destination under dynamic traffic conditions is an important topic in the field of Intelligent Transportation Systems (ITS). Nowadays, many complex systems can be controlled by using multi agent systems. Adaptation with the current condition is an important feature of the agents. In this research, formulation of dynamic guidance for vehicles has been investigated based...

متن کامل

Multi-agent Relational Reinforcement Learning

In this paper we study Relational Reinforcement Learning in a multi-agent setting. There is growing evidence in the Reinforcement Learning research community that a relational representation of the state space has many benefits over a propositional one. Complex tasks as planning or information retrieval on the web can be represented more naturally in relational form. Yet, this relational struct...

متن کامل

Transfer Learning Method Using Ontology for Heterogeneous Multi-agent Reinforcement Learning

This paper presents a framework, called the knowledge co-creation framework (KCF), for heterogeneous multiagent robot systems that use a transfer learning method. A multiagent robot system (MARS) that utilizes reinforcement learning and a transfer learning method has recently been studied in realworld situations. In MARS, autonomous agents obtain behavior autonomously through multi-agent reinfo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006